FEATURE SELECTION FOR THE LOW INDUSTRIAL YIELDOF CANE SUGAR PRODUCTION BASED ON RULELEARNING ALGORITHMS

Por: Yohan Gil Rodríguez, Raisa Socorro Llanes, Alejandro Rosete, Lisandra Bravo Ilisástigui

Pueden leer este importante artículo mediante el siguiente enlace:
https://www.jamris.org/index.php/JAMRIS/article/view/830/719

Abstract: 
This article presents a model based on machine learning for the selection of the characteristics that most influence the low industrial yield of cane sugar production in Cuba. 
The set of data used in this work corresponds to a period of ten years of sugar harvests from 2010 to 2019. A pro‐ cess of understanding the business and of understanding ing and preparing the data is carried out. 
The accuracy of six rule learning algorithms is evaluated: CONJUNC‐ TIVERULE, DECISIONABLE, RIDOR, FURIA, PART and JRIP. The results obtained allow us to identify: 
R417, R379, R378, R419a, R410, R613, R1427 and R380, as the indi‐ cators that most influence low industrial performance. Keywords: Feature selection, Rule learning, Data mining, CRISP‐DM, Industrial yield.

Puede leer el artículo completoa través del siguiente link:
https://www.jamris.org/index.php/JAMRIS/article/view/830/719

JAMRIS_1-2023_2

Deja una respuesta

Tu dirección de correo electrónico no será publicada.

4 × tres =